Как быстро научиться считать в уме

Содержание

Как научиться быстро считать в уме — обновлено 03.19

Как быстро научиться считать в уме

Очень мало людей умеют быстро считать. Подавляющее большинство взрослых людей подсчитывают необходимые расходы с помощью калькулятора. Из-за того, что большинство людей не умеет считать в уме, их обманывают в магазинах при выдаче сдачи. Сегодня мы будем вас учить быстрому счету в уме. Научившись это делать, вы также сможете обучить своего ребёнка этому навыку.

Что необходимо развивать, чтобы быстро считать

Несмотря на то что почти все люди считают с калькулятором, находятся редкие кадры, которые способны посчитать в уме. Как правило, на это способен один человек из класса, или даже из параллели. Людей, которые без проблем считают в уме, очень мало. Однако, это не значит, что они гении, и наделены сверхспособностями. Эти люди просто способны делать следующее:

  1. Концентрировать внимание сразу на нескольких вещах. Благодаря этому, они могут с лёгкостью перемножать двузначные и трехзначные числа.
  2. Оперировать с маленькими числами. Большие состоят из маленьких. А, следовательно, достаточно знания таблицы умножения, а дальше дело техники.

Как правило, способность к счету в уме у детей возникает с раннего детства. Если ребёнок умел оперировать с большими числами, намного опережая школьную программу, то в более зрелом возрасте он будет считать не задумываясь.

Для того чтобы научиться с лёгкостью считать в уме, вам необходимо сделать следующее:

  1. Развивать память.
  2. Научиться оперировать с числами от 0 до 9.
  3. Постоянно тренироваться.
  4. Изучить некоторые техники, которые значительно упрощают счёт.

Для развития кратковременной памяти необходимо делать различные упражнения. Самый лучший способ — поставить на стол несколько предметов, и запомнить их. Далее, вы должны отвернуться, а ваш товарищ должен убрать некоторые предметы. После этого, вы должны назвать предметы, которых не хватает. Предметов должно быть не менее десяти, так как такое количество запомнить довольно трудно.

А ещё, можно учить по одному четверостишию в день. Это очень хорошо развивает память, а, соответственно не будет лишним при освоении быстрого счёта в уме.

Научиться оперировать с числами от 0 до 9 — это значит научиться их складывать, умножать, вычитать и делить. Если вы хотите научить делать это своего ребёнка, то в этом вам помогут пальцы. Вычитать и складывать, можно научиться при помощи пальцев рук. Вычитая, необходимо загибать палец, а, прибавляя, — разгибать.

Что касается деления и умножения чисел, то здесь достаточно выучить таблицу умножения. Причём непросто вызубрить, а именно понять. Дети обучаются таким операциям в третьем классе. Так что, здесь ничего сложного нет. Однако люди, которые считают в уме с лёгкостью, в детстве значительно опережали школьную программу по арифметике.

Залог успеха в любом деле — постоянные тренировки. И обучение быстрому счету в уме не является исключением. Если вы хотите поражать своих знакомых, выдавая правильный ответ за мгновение, — тренируйтесь! Со временем, у вас все будет получаться!

Как быстро вычитать и складывать

Сложение и вычитание — одни из самых простых арифметических операций. Научиться быстро их выполнять в уме можно за считаные дни. Сейчас на примерах вы убедитесь, как просто складывать и вычитать.

Пример 1. Нам необходимо из 213 вычесть 79. На первый взгляд, может показаться, что пример действительно сложный, но, на самом деле, это не так. Что такое 79? Это сумма из 70 и 9.

Соответственно, нам необходимо отнять эти числа по отдельности. Сначала мы вычтем 70 из 213, и получим 143. Числа, кратные десяти гораздо проще отнимать и прибавлять. Поэтому мы и разбили 79 на два числа.

После чего, мы вычитаем 9 из 143, и получаем 134. Все элементарно!

Пример 2. Нужно найти сумму 23 и 41. Действуем по такому же алгоритму. Разбиваем 41 на 40 и 1. К 23 прибавляем единицу, и получаем 24. После чего, прибавляем к этому числу 40, и получаем 64. Как вы поняли, для выполнения таких простейших операций необходимо разбивать числа по разрядам. И тогда, всё будет гораздо проще.

Как быстро перемножать

При перемножении чисел рассмотрим 4 случая:

  1. Простое перемножение двух чисел.
  2. Возведение в квадрат.
  3. Умножение на 11.
  4. Взятие процента.

При перемножении двух чисел, необходимо также разбить его на два числа. Пример — нам нужно 43 умножить на 18. Что мы делаем? Мы разбиваем 43 на 40 и 3. После чего, умножаем 18 на каждое из этих чисел, и складываем произведения. Если умножить 18 на 40, то будем 720.

А, умножая 18 на 3, мы получим 54. Складывая результаты умножения, мы получаем 774. Важно понять структуру системы. Если у вас возникли трудности при умножении 40 на 18, то нужно было 18 также разбить на 10 и 8.

А после, перемножив и сложив все, что необходимо, вы получили бы 720.

При возведении в квадрат число умножается само на себя. Считать необходимо по такой же системе, разбивая число на два, и выполняя все дальнейшие операции, о которых мы говорили выше.

https://www.youtube.com/watch?v=hEVPZy4xaVQ

При умножении на одиннадцать не нужно ломать голову. Есть один очень простой способ, благодаря которому, на подсчёт ответа у вас уйдут считаные секунды. Пример — необходимо умножить 15 на 11. Что мы делаем? Мы суммируем цифры, из которого состоит число 15. То есть, просуммировав 1 и 5, мы получаем 6. Эту шестёрку нужно записать между единицей и пятёркой. Получаем результат — 165.

Если сумма двух цифр больше 9, например, она равна 12, то нужно единицу, которая находится слева прибавить к старшему разряду, а двойку вписать между этими двумя цифрами. Пример — 39 умножаем на 11. Сумма 3 и 9 равна 12. Единицу мы прибавляем к старшему разряду, и получаем 4. А двойку записываем между 4 и 9. Получаем результат — 429.

Что такое процент? Это одна сотая часть от числа. То есть, если нам нужно взять 30 процентов от какого-то числа, то необходимо умножить его на 30, и разделить на 100. Как умножать числа мы рассказали вам выше, а о том как делить, мы расскажем вам далее.

Как быстро делить числа

Для начала мы вам объясним, как делить маленькие числа. Например, у мамы 3 сына и 6 конфет, необходимо поделить их поровну. Что для этого нужно сделать? Правильно, каждому мальчику необходимо давать по одной конфетке пока они не кончатся. В таком случае каждому достанется по 2 конфеты. Соответственно, если мы разделим 6 на 3, то получим 2.

С большими числами все то же самое. Например, у работодателя выделено 82 тысяч рублей под зарплаты своим сотрудникам. У него в команде пятеро рабочих.

Соответственно, чтобы узнать зарплату каждого из них, необходимо разделить 82 тысячи на 5. Для этого разбиваем 82 тысяч на 80 и 2. Разделив 80 на 5, мы получаем 16. А, разделив, 2 тысячи на 5, мы получаем 400.

Просуммировав результаты, мы получаем результат — зарплата сотрудника равна 16400 рублей.

А что делать, если нацело не делится? Даже людям, которые способны к быстрому счету в уме, довольно трудно вычислить результат, если он будет не целый. В таком случае, если числа двух и более значные, лучше не ломать себе голову и воспользоваться калькулятором. А что делать, если числа небольшие, вам помогут узнать техники, о которых мы поговорим в следующем разделе.

Техники, связанные с числами, кратными 10

Если научиться применять эти техники, то вам будет гораздо проще освоить быстрый счёт в уме. Они нужны для того, чтобы облегчить умножение и деление. Объяснять все на пальцах слишком долго, поэтому мы приведём вам примеры, а вы сами все поймёте.

Пример 1. Нам необходимо разделить 90 тысяч на 5. Для этого нам нужно просто разделить 90 на 5, и после этого приписать к получившемуся результату три нуля.

Пример 2. Нам необходимо разделить 3 на 5. Для этого нужно умножить 3 на 10, потом разделить 30 на пять. А дальше, необходимо разделить шестёрку на 10. Для этого нужно просто поставить перед шестёркой запятую. Получается результат — ноль целых, шесть десятых.

Как вы могли догадаться, если вы делите на 10, то ставите запятую на одну цифру левее. То есть, сколько нулей в числе, кратном 10, на столько цифр влево вы приписываете запятую. Например, если вы делите 5 на тысячу, то результат будет равен 0,005. А при умножении, вы приписываете нули вправо. То есть, при умножении 5 на тысячу, результат будет равно 5000.

Пример 3. Умножение на числа, близкие к 100. То есть, на 98 или 99. Например, вам надо умножить 54 на 98. Для этого, умножьте 54 на 100, и получите 5400. После чего, необходимо вычесть 98 из 100. Мы получаем двойку, которую необходимо умножить на 54. В результаты мы получаем 108. Это число необходимо отнять от 5400. Получается результат, равный 5292.

Теперь вы сможете с лёгкостью освоить быстрый счёт в уме. Главное, — постоянно тренироваться, и через несколько недель, вы сможете поражать своих знакомых удивительной скоростью счёта в уме.

Читайте еще:  Проблема передозировки витамина Д у грудничков

Источник: https://wamy.ru/beremennost-i-rody/kak-nauchit-sya-bystro-schitat-v-ume.html

Эффективный счёт в уме или разминка для мозга

Как быстро научиться считать в уме

Эта статья навеяна топиком «Как и насколько быстро вы считаете в уме на элементарном уровне?» и призвана распространить приёмы С.А. Рачинского для устного счёта.

Рачинский был замечательным педагогом, преподававшим в сельских школах в XIX веке и показавшим на собственном опыте, что развить навык быстрого устного счёта можно.

Для его учеников не было особой проблемой посчитать подобный пример в уме:

Используем круглые числа

Один из самых распространённых приёмов устного счёта заключается в том, что любое число можно представить в виде суммы или разности чисел, одно или несколько из которых «круглое»:

Т.к. на 10, 100, 1000 и др.

круглые числа умножать быстрее, в уме нужно сводить всё к таким простым операциям, как 18 x 100 или 36 x 10. Соответственно, и складывать легче, «отщепляя» круглое число, а затем добавляя «хвостик»: 1800 + 200 + 190.

Еще пример:31 x 29 = (30 + 1) x (30 – 1) = 30 x 30 – 1 x 1 = 900 – 1 = 899.

Упростим умножение делением

При устном счёте бывает удобнее оперировать делимым и делителем нежели целым числом (например, 5 представлять в виде 10:2, а 50 в виде 100:2):
68 x 50 = (68 x 100) : 2 = 6800 : 2 = 3400;3400 : 50 = (3400 x 2) : 100 = 6800 : 100 = 68.
Аналогично выполняется умножение или деление на 25, ведь 25 = 100:4.

Например,
600 : 25 = (600 : 100) x 4 = 6 x 4 = 24;24 x 25 = (24 x 100) : 4 = 2400 : 4 = 600.

Теперь не кажется невозможным умножить в уме 625 на 53:
625 x 53 = 625 x 50 + 625 x 3 = (625 x 100) : 2 + 600 x 3 + 25 x 3 = (625 x 100) : 2 + 1800 + (20 + 5) x 3 = = (60000 + 2500) : 2 + 1800 + 60 + 15 = 30000 + 1250 + 1800 + 50 + 25 = 33000 + 50 + 50 + 25 = 33125.

Возведение в квадрат двузначного числа

Оказывается, чтобы просто возвести любое двузначное число в квадрат, достаточно запомнить квадраты всех чисел от 1 до 25. Благо, квадраты до 10 мы уже знаем из таблицы умножения.

Остальные квадраты можно посмотреть в нижеприведённой таблице:

Приём Рачинского заключается в следующем.

Для того чтобы найти квадрат любого двузначного числа, надо разность между этим числом и 25 умножить на 100 и к получившемуся произведению прибавить квадрат дополнения данного числа до 50 или квадрат избытка его над 50-ю. Например,

372 = 12 x 100 + 132 = 1200 + 169 = 1369; 842 = 59 x 100 + 342 = 5900 + 9 x 100 + 162 = 6800 + 256 = 7056;
В общем случае (M — двузначное число): Попробуем применить данный трюк при возведении в квадрат трёхзначного числа, разбив его предварительно на более мелкие слагаемые: 1952 = (100 + 95)2 = 10000 + 2 x 100 x 95 + 952 = 10000 + 9500 x 2 + 70 x 100 + 452 = 10000 + (90+5) x 2 x 100 + + 7000 + 20 x 100 + 52 = 17000 + 19000 + 2000 + 25 = 38025. Хм, я бы не сказала, что это сильно легче, чем возведение в столбик, но, возможно, со временем можно приноровиться. И начинать тренировки, конечно, следует с возведения в квадрат двузначных чисел, а там уже и до дизассемблирования в уме можно дойти.

Умножение двузначных чисел

Этот интересный приём был придуман 12-летним учеником Рачинского и является одним из вариантов добавления до круглого числа.

Пусть даны два двузначных числа, у которых сумма единиц равна 10: M = 10m + n, K = 10a + 10 – n. Составив их произведение, получим:

Например, вычислим 77 x 13. Сумма единиц этих чисел равна 10, т.к.

7 + 3 = 10. Сначала ставим меньшее число перед большим: 77 x 13 = 13 x 77.

Чтобы получить круглые числа, мы забираем три единицы от 13 и добавляем их к 77. Теперь перемножим новые числа 80 x 10, а к полученному результату прибавим произведение отобранных 3 единиц на разность старого числа 77 и нового числа 10:
13 x 77 = 10 x 80 + 3 x (77 – 10) = 800 + 3 x 67 = 800 + 3 x (60 + 7) = 800 + 3 x 60 + 3 x 7 = 800 + 180 + 21 = 800 + 201 = 1001. У этого приёма есть частный случай: всё значительно упрощается, когда у двух сомножителей одинаковое число десятков. В этом случае число десятков умножается на следующее за ним число и к полученному результату приписывается произведение единиц этих чисел. Посмотрим, как элегантен этот приём на примере.

48 x 42. Число десятков 4, последующее число: 5; 4 x 5 = 20. Произведение единиц: 8 x 2 = 16. Значит,

48 x 42 = 2016.
99 x 91. Число десятков: 9, последующее число: 10; 9 x 10 = 90. Произведение единиц: 9 x 1 = 09. Значит, 99 x 91 = 9009.
Ага, то есть, чтобы перемножить 95 x 95, достаточно посчитать 9 x 10 = 90 и 5 x 5 = 25 и ответ готов:
95 x 95 = 9025. Тогда предыдущий пример можно вычислить немного проще: 1952 = (100 + 95)2 = 10000 + 2 x 100 x 95 + 952 = 10000 + 9500 x 2 + 9025 = 10000 + (90+5) x 2 x 100 + 9000 + 25 = = 10000 + 19000 + 1000 + 8000 + 25 = 38025.

Вместо заключения

Казалось бы, зачем уметь считать в уме в 21 веке, когда можно просто подать ую команду смартфону? Но если задуматься, что будет с человечеством, если оно будет взваливать на машины не только физическую работу, но и любую умственную? Не деградирует ли оно? Даже если не рассматривать устный счёт как самоцель, для закалки ума он вполне подходит.

Использованная литература:

«1001 задача для умственного счёта в школе С.А. Рачинского».

  • устный счет
  • математика и реальная жизнь

Источник: https://habr.com/post/207034/

Как научиться быстро считать в уме?

Как быстро научиться считать в уме

Отправить

Класснуть

Как давно вы считали в уме, а не столбиком, и уж тем более не с помощью калькулятора? Между прочим, считать в уме не только модно, но и полезно: так вы развиваете краткосрочную память, концентрацию и внимание. А ещё, какой же кайф испытываешь, когда можешь посчитать, сколько тебе должны дать сдачи, пока стоишь в очереди, м-м-м…

Всего несколько месяцев ежедневных тренировок по 5-10 минут, и вы почувствуете, как ускорился ваш мозг.

Сложение

Начнём с простого — сложения однозначных чисел. Научившись мгновенно складывать однозначные числа, вы сможете легко складывать и многозначные числа, потому что все расчёты сводятся к выполнению типовых действий. Вы в этом скоро убедитесь.

Сложение однозначных чисел

С примерами, результаты которых находятся в пределах 10 проблем нет. Эти комбинации чисел нужно просто запомнить, как основу основ.

А вот для примеров «с переходом через 10» уже есть методика — «опора на десяток». Суть в том, чтобы довести одно слагаемое до 10, а потом из второго слагаемого вычесть столько же, сколько мы прибавили к первому.

Например, нам нужно сложить 5 и 8:

  1. Числу 5 не хватает до 10 ещё столько же — 5.
  2. Теперь представим 8 как сумму 5 и ещё какого-то числа (это 3).
  3. И прибавим к 5 ту часть числа 8, которой недостаёт до 10, а затем и остаток. Получится 10 и 3, то есть 13.

Сложение многозначных чисел

Принцип сложения многозначных чисел — складывать друг с другом одинаковые разряды: тысячи с тысячами, сотни с сотнями, десятки с десятками, единицы с единицами.

Например, нам нужно сложить 245 и 917:

  1. 245 состоит из трёх разрядов — 200, 40 и 5. А 917 из 900, 10 и 7.
  2. Сложим разрядные части друг с другом:

    200 + 900 = 1100, 40 + 10 = 50, 5 + 7 = 12.

  3. А теперь сложим получившиеся числа в обратном порядке, «закрывая» нули:

    12 + 50 = 62

    62 + 1100 = 1162.

Вычитание

Как и со сложением, с вычитанием однозначных чисел из однозначных ничего сложного нет. А при вычитании однозначного числа из двузначного удобно пользоваться тем же правилом «опоры на десяток».

Вычитание однозначных числа

Например, нужно вычесть 13 − 7:

  1. Убираем у 13 столько, чтобы получилось 10 — то есть 3.
  2. Столько же убираем и у 7 — получается 4.
  3. Теперь просто вычитаем 4 из 10.

Вычитание многозначных чисел

Здесь всё даже проще, чем со сложением многозначных чисел, потому что на разрядные части нужно разложить только то число, которое вычитаем.

Например, нужно вычесть 734 − 427:

  1. Раскладываем 427 на разряды: 400, 20 и 7. Теперь последовательно вычитаем их из 734.
  2. Вычесть 734 − 400 очень просто, потому что действие происходит только с сотнями. Грубо говоря, мы вычитаем 4 из 7 — получаем 3, вернее, 334.
  3. С десятками всё аналогично: вычитаем 30 − 20, получаем 10 — 314.
  4. Теперь вычитаем единицы через десяток: 314 − 7.

    Убираем 4 из 314 и 7, получаем 310 − 3. Ну а тут уже совсем просто — ответ 307.

Небольшие хитрости

Чтобы вычитать 7, 8 и 9 было проще, часто прибегают к следующим правилам:

  1. При отнимании 9 из числа сначала вычитают 10, а затем добавляют 1:

    n − 10 + 1

    321 − 9 = 321 − 10 + 1 = 312

  2. При отнимании 8 из числа сначала вычитают 10, а затем добавляют 2:

    n − 10 + 2

    321 − 8 = 321 − 10 + 2 = 313

  3. При отнимании 7 из числа сначала вычитают 10, а затем добавляют 3:

    n − 10 + 3

    321 − 7 = 321 − 10 + 3 = 314

Умножение

Это когда несколько раз складывают одно и то же. Например, 7 × 3 = 7 + 7 + 7 = 21.

Чтобы научиться быстро умножать любые числа в уме (кроме совсем уж космических), нужно идеально умножать однозначные числа, то есть знать таблицу умножения.

Умножение однозначного числа на двузначное

Умножим 387 × 8:

  1. В первую очередь мы раскладываем 387 на разряды — 300, 80 и 7 — и умножаем каждый из них на 8.
  2. Начинаем с сотен: 300 × 8 — это то же самое, что умножить 3 × 8, а потом к результату дописать два нуля. То есть:

    3 × 8 × 100 = 24 × 100 = 2400.

    По аналогии, 80 × 8 = 640, 7 × 8 = 56.

  3. А теперь мы складываем получившиеся числа, объединяя их по разрядам:

    2400 + 640 + 56 = 2000 + 400 + 600 + 40 + 50 + 6 = 2000 + (400 + 600) + (40 + 50) + 6 = 2000 + 1000 + 90 + 6 = 3000 + 90 + 6 = 3096

Небольшие хитрости

  1. Любое число легко умножить на 9: нужно просто умножить на 10 (или дописать в конце ноль), а затем отнять исходное число.

    47 × 9 = (47 × 10) − 47 = 470 − 47 = 423

  2. Некруглое число можно легко умножить на 2, сначала округлив его до удобного ближайшего значения.

    Например, 237 × 2. Сначала проще умножить 240 × 2 = 480. А потом вычесть из результата 6 (3 × 2 = 6 — ведь 3 нам не хватало до 240). Итого:

    237 × 2 = 240 × 2 − (3 × 2) = 476

  3. Чтобы умножить любое двузначное число на 11, нужно сложить две цифры этого двузначного числа друг с другом, а затем вписать её между цифрами исходного числа:

    35 × 11

    3 + 5 = 8

    35 × 11 = 385

    Правда, если сумма двух цифр исходного числа больше 10, нужно поставить разряд единиц между цифрами исходного числа, а десяток прибавить к левой цифре:

    89 × 11

    8 + 9 = 17

    89 × 11 = 979

Умножение двузначных чисел

Хотя кажется, что умножать двузначные числа — вершина ментальных вычислений, решать такие примеры не сильно сложнее, чем в предыдущем пункте. Давайте разберём на примере.

Умножим 83 × 34:

  1. Разобьём 34 на 30 и 4, чтобы было проще, а затем умножим каждое на 83.
  2. 83 умножить на 30 просто — это как умножить 83 × 3, а потом умножить результат ещё на 10. Как умножать однозначные и двузначные числа мы разобрались. Считаем:

    83 × 3 = 80 × 3 + 3 × 3 = 240 + 9 = 249. Значит, 84 × 30 = 2490.

  3. Теперь умножим

    83 × 4 = 80 × 4 + 3 × 4 = 320 + 12 = 332.

  4. Сложим результаты:

    2490 + 332 = 2000 + 400 + 300 + 90 + 30 + 2 = 2000 + 700 + 120 + 2 = 2822.

Деление

Это операция, обратная умножению. Начнём снова с самого простого.

Деление двузначного числа на однозначное

Разделим 48 : 3. Основная задача — подобрать число, которое можно умножить на 3 и получить 48. Из таблицы умножения мы помним, что единственное число, результат умножения которого на 3 в конце имеет цифру 8 — это 6. А 3 × 6 = 18. То есть, у нас остаётся 30 : 3 = 10. Итого, получается 48 : 3 = 16.

Деление многозначного числа на однозначное

Разделим 6475 : 7. В подобных примерах главная задача — «взять» максимальные «круглые» части, которые можно разделить на 6 без остатка.

  1. Выделим из 6475 самую большую часть, которую можно разделить на 7 без остатка. 6475 близко к 7000 (то есть 7 × 1000), значит, можно попробовать взять 900 × 7 = 6300. Отлично!
  2. Остаётся 175. Таким же образом, выделяем из 175 самое большое число, которое можно разделить на 7 по таблице умножения — это 140. А 140 : 7 = 20. Запомним это число и вычтем 175 − 140. Сотни в результате дают ноль, а 7 − 4 = 3. То есть остаток на данный момент — 35.
  3. Вспоминаем, что по таблице умножения 7 × 5 = 35, и складываем все получившиеся числа: 900 + 20 + 5 = 925.

Деление на двузначное число

С делением на двузначное число всё гораздо интереснее. Задача в том, чтобы найти пределы, в которых лежит результат.

Например, разделим 6351 : 73:

  1. Сначала попробуем угадать, в каком десятке находится результат. Помним, что по таблице умножения 7 × 8 = 56, поэтому пробуем умножить 73 × 80 = 5840. Это максимально близкий десяток, потому что если прибавить ещё 730 (то есть 73 × 10), получится уже 6570 — больше чем нужно. Следовательно, наше число лежит в пределах между 80 и 90.
  2. Теперь посмотрим на последние цифры наших чисел — 1 и 3. Из таблицы умножения мы помним, что только одно число при умножении на 3 на на конце даёт 1 — это 7. Пробуем умножить 73 × 7 = 511. Складываем 5840 + 511 = 6351. Ура, ответ 87!

Небольшие хитрости

  1. Некруглые числа можно легко делить на 2, округляя их. Например, 358 делим на 2. Округлим 358 до 360, а затем уже его разделим на 2 — получим 130. А затем вычтем и этого числа 1 (получились в результате деления на 2 прибавленной 2).

    358 : 2 = 360 : 2 − 2 : 2 = 130 − 1 = 129

  2. Существует закономерность, по которой умножение на 5 можно почти приравнять к делению на Например, если умножить 47 × 5 = 235, а если разделить 47 : 2 = 23,5. Магия, да? То есть чтобы умножить любое число на 5, его нужно сначала разделить на 2, а затем умножить на 10.
  3. Чтобы умножить число на 25, порой проще разделить его на 4, а затем умножить на 100 (или дописать два нуля):

    12 × 25 = 12 : 4 × 100 = 3 × 100 = 300

Этих способов достаточно, чтобы тренироваться уверенно считать в уме. Помните, что делать это нужно регулярно, уделяя всего по 5–10 минут каждый день. Постарайтесь поймать свой ритм, чтобы решение таких задачек приносило удовольствие. И упирайте на правильность ответов, а не скорость — она придёт со временем. И не бросайте.

А если вам нужна помощь в решении более сложных задач, которые уже нельзя просчитать в уме, вам с радостью помогут специалисты Мультиворка

Отправить

Класснуть

05.02.19 Блог Знания математика саморазвитие

Источник: https://multiwork.org/blog/kak-nauchitsya-bystro-schitat-v-ume/

Устный счет: как научиться считать в уме

Как быстро научиться считать в уме

Устный счёт

Навык устного счета не опирается на один лишь опыт. Это доказывают люди, которые способны считать в уме сложные примеры. В этом курсе вы узнаете про специальные алгоритмы счета в уме.

«Математику уже за то любить следует, что она ум в порядок приводит» – говорил Михаил Ломоносов. Умение считать в уме остается полезным навыком и для современного человека, несмотря на то, что он владеет всевозможными устройствами, способными считать за него.

Возможность обходиться без специальных девайсов и в нужный момент оперативно решить поставленную арифметическую задачу – это не единственное применение данного навыка. Помимо утилитарного назначения, приемы устного счета позволят вам научиться организовывать себя в различных жизненных ситуациях.

Кроме того, умение считать в уме, несомненно, положительно скажется на имидже ваших интеллектуальных способностей и выделит вас среди окружающих «гуманитариев».

Тренировка устного счета

Есть люди, которые умеют совершать несложные арифметические операции в уме. Умножить двузначное число на однозначное, умножать в пределах 20, перемножить два небольших двузначных числа и т.д.

– все эти действия они могут производить в уме и достаточно быстро, быстрее среднего человека. Часто этот навык оправдан необходимостью постоянного практического использования.

Как правило, люди, которые хорошо считают в уме, имеют математическое образование или, по крайней мере, опыт решения многочисленных арифметических задач.

Несомненно, опыт и тренировка играет важнейшую роль в развитии любых способностей. Но навык устного счета не опирается на один лишь опыт.

Это доказывают люди, которые, в отличие от вышеописанных, способны считать в уме гораздо более сложные примеры.

Например, такие люди могут умножать и делить трехзначные числа, совершать сложные арифметические операции, которые не каждый человек и в столбик сможет посчитать.

Что же необходимо знать и уметь обычному человеку, чтобы овладеть такой феноменальной способностью? На сегодняшний день существуют различные методики, помогающие научиться быстро считать в уме. Изучив многие подходы к обучению навыку считать устно, можно выделить 3 основных составляющих данного навыка:

1. Способности. Способность концентрировать внимание и умение удерживать в краткосрочной памяти несколько вещей одновременно. Предрасположенность к математике и логическому мышлению.

2. Алгоритмы. Знание специальных алгоритмов и умение оперативно подобрать нужный, максимально эффективный алгоритм в каждой конкретной ситуации.

3. Тренировка и опыт, значение которых для любого навыка никто не отменял. Постоянные тренировки и постепенное усложнение решаемых задач и упражнения позволят вам улучшить скорость и качество устного счета.

Нужно отметить, что третий фактор имеет ключевое значение. Не обладая необходимым опытом, вы не сможете удивить окружающих быстрым счетом, даже если вы знаете самый удобный алгоритм.

Однако не стоит недооценивать важность первых двух составляющих, поскольку имея в своем арсенале способности и набор нужных алгоритмов, вы сможете «переплюнуть» даже самого опытного «счетовода», при условии, что вы тренировались одинаковое время.

Уроки на сайте

Уроки устного счета, представленные на сайте, направлены именно на развитие этих трех составляющих. В первом уроке рассказано, как развить в себе предрасположенность к математике и арифметике, а также описаны основы счета и логики.

Затем дан ряд уроков по специальным алгоритмам для совершения различных арифметических операций в уме.

И наконец, в данном тренинге представлены дополнительные материалы, помогающие тренировать и развивать умение считать устно, для того, чтобы суметь применить свой талант и свои знания в жизни.

Урок 1. Способности. Упражнения и рекомендации по развитию устного счета, внимания, краткосрочной памяти.

  • Урок 1. Внимание и концентрация при счете в уме

Уроки 2-7. Алгоритмы. Что касается методик, то они даны в следующих уроках, которые разделены на несколько видов:

  • Урок 2. Простые арифметические закономерности
  • Урок 3. Традиционные методы умножения двузначных чисел
  • Урок 4. Частные методики умножения двузначных чисел
  • Урок 5. Опорное число при умножении чисел до 100
  • Урок 6. Умножаем любые числа до 100
  • Урок 7. Возведение в квадрат

Дополнительные материалы. Тренировка. В дополнение к урокам на сайте представлены многочисленные приемы и способы, упражнения, методики, интересные примеры, статьи и видео и многое другое для тренировки и развития вашего быстрого счета в уме.

Уже сейчас вы можете проверить, как быстро вы считаете в уме.

Игра загружается…

Напоминаем, что для полноценной работы сайта вам необходимо включить cookies, javascript и iframe. Если вы ввидите это сообщение в течение долгого времени, значит настройки вашего браузера не позволяют нашему порталу полноценно работать.

Евгений Буянов1 Внимание и концентрация →

1PRO

Источник: https://4brain.ru/schitat-v-ume/

Устный счет: техника быстрого счета в уме

Как быстро научиться считать в уме

Зачем считать в уме, если решить любую арифметическую задачу можно на калькуляторе. Современная медицина и психология доказывают, что устный счет – это тренаж для серых клеточек. Выполнять такую гимнастику необходимо для развития памяти и математических способностей.

Известно множество приёмов для упрощения вычислений в уме. Все, кто видел знаменитую картину Богданова-Бельского «Устный счёт», всегда удивляются – как крестьянские дети решают такую непростую задачу, как деление суммы из пяти чисел, которые предварительно ещё надо возвести в квадрат?

Оказывается, эти дети – ученики известного педагога-математика Сергея Александровича Рачицкого (он также изображен на картине). Это не вундеркинды – ученики начальных классов деревенской школы XIX века. Но все они уже знают приёмы упрощения арифметических расчетов и выучили таблицу умножения! Поэтому решить такую задачку этим детишкам вполне под силу!

Секреты устного счёта

Существуют приемы устного счета простые алгоритмы, которые желательно довести до автоматизма. После овладения простыми приёмами можно переходить к освоению более сложных.

Прибавляем числа 7,8,9

Для упрощения вычислений числа 7,8,9 сначала надо округлять до 10, а затем вычитать прибавку. К примеру, чтобы прибавить 9 к двузначному числу, надо сначала прибавить 10, а затем вычесть 1 и т.д.

Примеры:

56+7=56+10-3=63

47+8=47+10-2=55

73+9=73+10-1=82

Быстро складываем двузначные числа

Если последняя цифра двузначного числа больше пяти, округляем его в сторону увеличения. Выполняем сложение, из полученной суммы отнимаем «добавку».

Примеры:

54+39=54+40-1=93

26+38=26+40-2=64

Если последняя цифра двузначного числа меньше пяти, то складываем по разрядам: сначала прибавляем десятки, затем – единицы.

Пример:

57+32=57+30+2=89

Если слагаемые поменять местами, то сначала можно округлить число 57 до 60, а потом вычесть из общей суммы 3:

32+57=32+60-3=89

Складываем в уме трехзначные числа

Быстрый счет и сложение трехзначных чисел – это возможно? Да. Для этого надо разобрать трехзначные числа на сотни, десятки, единицы и поочередно их приплюсовать.

Пример:

249+533=(200+500)+(40+30)+(9+3)=782

Особенности вычитания: приведение к круглым числам

Вычитаемые округляем до 10, до 100. Если надо вычесть двузначное число, надо округлить его до 100, вычесть, а затем к остатку прибавить поправку. Это актуально если поправка невелика.

Примеры:

67-9=67-10+1=58

576-88=576-100+12=488

Вычитаем в уме трехзначные числа

Если в свое время был хорошо усвоен состав чисел от 1 до 10, то вычитание можно производить по частям и в указанном порядке: сотни, десятки, единицы.

Пример:

843-596=843-500-90-6=343-90-6=253-6=247 

Умножить и разделить

Моментально умножать и делить в уме? Это возможно, но без знания таблицы умножения не обойтись. Таблица умножения – это золотой ключик к быстрому счету в уме! Она применяется и при умножении, и при делении. Вспомним, что в начальных классах деревенской школы в дореволюционной Смоленской губернии (картина «Устный счет») дети знали продолжение таблицы умножения – с 11 до 19!

Хотя на мой взгляд достаточно знать таблицу от 1 до 10, чтобы мочь перемножать бо´льшие числа. Например:

15*16=15*10+(10*6+5*6)=150+60+30=240

Умножаем и делим на 4, 6, 8, 9

Овладев таблицей умножения на 2 и на 3 до автоматизма, сделать остальные расчеты будет проще простого.

Для умножения и деления двух- и трехзначных чисел применяем простые приёмы:

  • умножить на 4 – это дважды умножить на 2;
  • умножить на 6 – это значит умножить на 2, а потом на 3;
  • умножить на 8 – это трижды умножить на 2;
  • умножить на 9 – это дважды умножить на 3.

Например:

37*4=(37*2)*2=74*2=148;

412*6=(412*2)·3=824·3=2472

Аналогично:

  • разделить на 4 – это дважды разделить на 2;
  • разделить на 6 – это сначала разделить на 2, а потом на 3;
  • разделить на 8 – это трижды разделить на 2;
  • разделить на 9 – это дважды разделить на 3.

Например:

412:4=(412:2):2=206:2=103

312:6=(312:2):3=156:3=52

Как умножать и делить на 5

Число 5 – это половина от 10 (10:2). Поэтому сначала умножаем на 10, затем полученное делим пополам.

Пример:

326*5=(326*10):2=3260:2=1630

Еще проще правило деления на 5. Сначала умножаем на 2, а затем полученное делим на 10.

326:5=(326·2):10=652:10=65,2.

Умножение на 9

Чтобы умножить число на 9, необязательно его дважды умножать на 3. Достаточно его умножить на 10 и вычесть из полученного умножаемое число. Сравним, что быстрее:

37*9=(37*3)*3=111*3=333

или

37*9=37*10 – 37=370-37=333

Также давно замечены частные закономерности, которые значительно упрощают умножение двузначных чисел на 11 или на 101. Так, при умножении на 11, двузначное число как бы раздвигается. Составляющие его цифры остаются по краям, а в центре оказывается их сумма.

Например: 24*11=264. При умножении на 101, достаточно приписать к двузначному числу такое же. 24*101= 2424. Простота и логичность таких примеров вызывает восхищение.

Встречаются такие задачи очень редко – это примеры занимательные, так называемые маленькие хитрости.

Счет на пальцах

Сегодня еще можно встретить много защитников «пальчиковой гимнастики» и методики устного счета на пальцах.

Нас убеждают, что учиться складывать и отнимать, загибая и разгибая пальцы – это очень наглядно и удобно. Диапазон таких вычислений очень ограничен.

Как только расчеты выходят за рамки одной операции возникают трудности: надо осваивать следующий прием. Да и загибать пальцы в эпоху айфонов как-то несолидно.

Например, в защиту «пальчиковой» методики приводится приём умножения на 9. Хитрость приёма такова:

  • Чтобы умножить любое число в пределах первой десятки на 9, надо развернуть ладони к себе.
  • Отсчитывая слева направо, загнуть палец, соответствующий умножаемому числу. К примеру, чтобы умножить 5 на 9, надо загнуть мизинец на левой руке.
  • Оставшееся количество пальцев слева будет соответствовать десяткам, справа – единицам. В нашем примере – 4 пальца слева и 5 справа. Ответ: 45.

Да, действительно, решение быстрое и наглядное! Но это – из области фокусов. Правило действует только при умножении на 9.  А не проще ли, для умножения 5 на 9 выучить таблицу умножения?  Этот фокус забудется, а хорошо выученная таблица умножения останется навсегда.

Также существует еще множество подобных приемов с применением пальцев для каких-то единичных математических операций, но это актуально пока вы этим пользуетесь и тут же забывается при прекращении применения. Поэтому лучше выучить стандартные алгоритмы, которые останутся на всю жизнь. 

Устный счёт на автомате

  • Во-первых, необходимо хорошо знать состав числа и таблицу умножения.
  • Во-вторых, надо запомнить приемы упрощения расчётов. Как выяснилось, таких математических алгоритмов не так уж много.
  • В-третьих, чтобы приём превратился в удобный навык, надо постоянно проводить краткие «мозговые штурмы» – упражняться в устных вычислениях, используя тот или иной алгоритм.

Тренировки должны быть короткими: решить в уме по 3-4 примера, используя один и тот же приём, затем переходить к следующему. Надо стремиться использовать любую свободную минутку – и полезно, и нескучно. Благодаря простым тренировкам все вычисления со временем будут совершаться молниеносно и без ошибок. Это очень пригодится в жизни и выручит в непростых ситуациях.

Источник: https://myintelligentkids.com/ustnyj-schet-texnika-bystrogo-scheta-v-ume

Как научиться быстро считать в уме

Как быстро научиться считать в уме

Научиться быстро считать в уме несложно, для этого необходимы лишь опыт и тренировки. Умение оперировать со сложными числами повышает уровень контроля над многими жизненными процессами, делает человека более собранным и организованным. Также быстрый счет в уме позволяет отвлечься от грустных мыслей, улучшает память, внимание и чувство уверенности в себе.

Особенности и преимущества быстрого счета в уме

Оперировать в уме с цифрами до 20 в настоящее время может практически каждый образованный человек. Однако, производить мысленные расчеты со значениями, которое имеют три числа и больше, уже затруднительно. Такое под силу только тем, кто осуществляет математические операции в уме регулярно, к ним можно отнести математиков, ученых, бухгалтеров и т.п.

Как овладеть такими же навыками быстрого счета, как и у этих специалистов? Это не является чем-то невозможным. В каждом из нас от природы заложены способности к этому.

У некоторых они развиты в большей мере, другие должны немного потренироваться. Задания для тренировки можно найти в свободном доступе в интернете.

Можно разработать собственную методику, которая будет учитывать все личностные особенности и поможет быстро освоить нужные навыки.

Для того, чтобы преуспеть в данном деле, необходимо соблюдать следующие основные правила:

Сначала необходимо разработать собственный режим тренировок, а затем, если вы действительно желаете добиться внушительных результатов, неукоснительно его соблюдать.  В течение первого месяца тренировки должны осуществляться один раз в день по 10-15 минут. Делать их дольше не рекомендуется, поскольку можно сильно устать и  охладеть данному занятию.

Если будет сложно, то можно делать перерыв на один или два дня. Не торопитесь, осваивайте методику в собственном ритме. Освоение быстрого счета похоже на изучение стихов. Если что-то не получается сразу, то не отступайте, продолжайте тренироваться и успех не заставит себя ждать.

  • внимательность и концентрация

Это очень важный момент при изучении методики быстрого счета. В первую очередь необходимо запомнить алгоритм работы со сложными числами. Затем, в процессе тренировок он будет вспоминаться, и произвести действие в уме даже с трех- и четырехзначными цифрами не составит труда.

Старайтесь не отвлекаться на посторонние дела, чтобы не перегружать мозг лишней информацией и быстрее овладеть нужными навыками.

  • соблюдение режима тренировок

Это одна из основ успеха. Только терпение и регулярная работа над собой позволит получить желаемое. Составьте расписание, в какое время будет осуществлять занятия. Можно даже отмечать там информацию о проведенном упражнении каждый день.

Также является одной из ключей к успеху, когда человек видит цель перед собой, то он будет стремиться достичь ее, даже если для этого потребует приобрести определенные навыки и умения.

В любом деле, чтобы достичь успеха, нужно терпение и настойчивость, даже если все получается не сразу. Все люди разные, кому-то требуется больше времени для получения данных навыков кому-то меньше. Главное – это не сдаться после первых неудач.

Также перед началом тренировок необходимо учитывать следующие основные моменты:

Не все люди от природы наделены математическим складом ума, поэтому для освоения алгоритмов быстрого счета им потребуется немного больше времени. Только не следует делать этот факт главной отговоркой, чтобы не учить методику.

  • знание и понимание математических алгоритмов

Это необходимо, чтобы в дальнейшем производить быстрые вычисления в уме по заранее выученной схеме.

В период интенсивных умственных тренировок следует включить в свой рацион продукты для питания мозга, например, хорошо подойдут грецкие орехи, мед, фрукты.

Используя данные навыки, будет очень приятно осуществлять мысленные счетовые операции, не прибегая к использованию калькулятора и других средств для вычисления.

Основные методики

Для развития навыков счета в уме существует множество способов. Каждый может выбрать для себя наиболее удобный. Операций с числами всего существует четыре: сложение, умножение, вычитание, деление.

Достаточно один раз разобраться в алгоритме, чтобы потом развить необходимее навыки. Вполне достаточно будет тренироваться 10-15 минут в день, а затем периодически поддерживать полученные способности эпизодическими тренировками. Первые результаты будут заметны уже через полмесяца, а через два-три месяца вы сможете выйти на приличный уровень счета.

  • методика для быстрого сложения

Это самый простой уровень, с которого необходимо начать при тренировках. Начать лучше всего с двухзначных цифор. Например, нужно произвести сложение чисел 23 и 51. Сначала складываем десятки: 20+50 = 70, затем к полученной сумме прибавляем остаток 3+1=4. В итоге получаем цифру 74.

Освоить сложение многозначных чисел, также не составит особого труда. Например, сложим 342 и 741. Для этого разобьем данные числа на разряды 300, 40, 2 и 700, 40 и 1 соответственно. Затем по аналогии с двузначными цифрами начинаем складывать в уме:  300 + 700 = 1000, 40+40 = 80, 2+1 = 3, затем сложим 1000+80+3 = 1083.

  • методика для быстрого вычитания

Так же, как и при сложении, вычитание двух значений не составит большого труда. Начнем с двухзначных чисел, например, нам нужно вычесть из 35 цифру 23. Начнем также с разрядов: 30-20 = 10, 5-3 =2, затем сложим полученные значения 10+2  и получим искомое число 12.

Вычитание многозначных чисел также несложно, например, вычтем из 377 цифру 154. Для этого разобьем цифровые значения на разряды 300, 70, 7 и 100, 50 и 4 соответственно.

Осуществим вычитание 300-100 = 200, 70-50 = 20, 7-4 = 3 , затем складываем полученные цифры: 200+20+3 = 223.

Таким же способом можно осуществлять вычитание цифр л в уме с более высокой разрядностью.

  • методика для быстрого умножения

Эту процедуру можно значительно облегчить, выучив таблицу умножения. Известно, что умножение – это упрощение операции сложения. Например, 3*6 =18, а по сути это сумма трех шестерок.

При умножении можно также использовать методику разрядности, например, нужно найти произведение 42*3. Сначала 2*3 = 6, 4*3 =12, затем совмещаем эти числа, ставя последнее перед первым, т.е. получаем цифру 126.

Данный алгоритм подойдет для вычисления произведения двухзначных цифр.

При умножении трехзначных числе в уме методика будет немного другая. Например, нам нужно умножить 421 и 372. Здесь придется применить сложение.

Умножаем поочередно 421 на каждый разряд второго числа: 421*2 = 842, 421*7= 2942, 421*3 = 1263, затем складываем эти числа, соблюдая разрядность со смещением: 2000+1000 = 120000, 800+900+200 = 29800, 40+40+60=6440, 2+7+3 = 372, в итоге получаем цифру 156612.

При умножении трехзначных чисел нужно быть особенно внимательным, чтобы не ошибиться со сложением разрядов в уме.

  • методика для быстрого деления

Деление однозначных и двухзначных чисел в уме осуществляется по простому принципу с использованием таблицы умножения. Например, нам нужно разделить 35 на 5, вспомнив таблицу умножения, мы заранее знаем, что результат будет 7.

Деление многозначных чисел осуществлять немного сложнее. Например, разделим 345 на 5, осуществляем это также с учетом разрядности: 300/5 = 60, 45/5 = 9, затем складываем 60+9 и получаем искомую цифру 69.

Насколько можно видеть, принцип осуществления любых подсчетов в уме основан на принципе разрядности.

Необходимо знать

Приобретение способностей быстрого счета в уме является значительным преимуществом для индивидуума, поскольку только ограниченное количество людей владеет подобными навыками. Однако, впоследствии, необходимо учитывать следующие моменты:

  • регулярно поддерживать приобретенные навыки;
  • проговаривайте вслух математические операции при тренировках;
  • не переусердствуйте.

Дорогу осилит идущий. Только при должном терпении и мотивации, возможно, сохранить способности быстрого математического счета в уме на долгое время.

Научиться быстро считать в уме не является непосильной задачей. Каждый может освоить методику быстрых математических вычислений, для этого необходимы упорство, концентрация и регулярные тренировки.

Способов получить данный навык существует много, каждый может подобрать для себя тот, который больше всего понравиться.

Осуществление быстрых вычислительных операций в уме базируется на принципе разрядности.

Источник: https://homeblogkate.ru/kak-nauchitsya-bystro-schitat-v-ume/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.