Гравитационный эффект в телефоне что это

Гравитационная линза

Гравитационный эффект в телефоне что это
статьи

Гравитационная линза – массивное тело, искривляющее своим гравитационным полем направление распространения проходящего мимо него излучения.

Этот эффект тяготения называют «линзой» по той причине, что параллельный пучек излучения, пройдя мимо массивного тела, концентрируется позади него, подобно тому, как концентрируется световой луч, проходя сквозь стеклянную положительную линзу.

В принципе, роль гравитационной линзы может играть любое тело, но на практике заметное искривление лучей способно вызвать лишь очень массивное тело, например, крупная планета или звезда, а также крупная система тел, такая как галактика или скопление галактик. Гравитационная линза одинаково влияет на все виды электромагнитного излучения и потоки релятивистских частиц.

Предсказание эффекта гравитационной фокусировки лучей

Эффект гравитационной линзы был предсказан А.Эйнштейном, который в 1915 в рамках общей теории относительности впервые правильно вычислил угол отклонения луча света в гравитационном поле компактного объекта.

Во время полного солнечного затмения 29 мая 1919 года английские астрономы измерили отклонение света звезд, проходящего вблизи поверхности Солнца: смещение изображений звезд составило 1,75І в полном согласии с предсказанием Эйнштейна.

Первый, кто использовал термин «линза», говоря об отклонении электромагнитного луча гравитацией, по-видимому, был английский физик Оливер Лодж (1851–1940), который в 1919 отметил, что «гравитационное поле действует, как линза, но не имеет фокусного расстояния».

Он оказался прав: поскольку действие гравитации быстро ослабевает с расстоянием от источника (обратно пропорционально квадрату расстояния), фокусирующее действие гравитационной линзы отличается от действия ее стеклянного аналога.

Если обычная линза собирает весь падающий на нее свет в одной точке фокуса, то гравитационная линза только отклоняет лучи к оптической оси, но не может собрать их в едином фокусе: чем дальше проходят лучи от источника гравитации, тем на большем расстоянии от него эти лучи пересекаются.

Поэтому фокусирующий эффект простейшей (точечной) гравитационной линзы весьма слаб и не может очень сильно увеличить яркость изображения источника света. Такого же мнения придерживался и знаменитый английский астрофизик А.Эддингтон, не веривший в возможность наблюдения эффекта гравитационной фокусировки.

Однако физики продолжали теоретически изучать этот любопытный эффект.

Известный петербургский профессор Орест Даниилович Хвольсон (1852–1934) в 1924 опубликовал в немецком журнале «Astronomische Nachrichten» заметку о том, что луч света далекой звезды может быть отклонен притяжением другой звезды-линзы, в результате чего возникнет второе изображение далекой звезды.

Однако он заметил, что угол между этими двумя изображениями будет столь мал, что их нельзя увидеть по отдельности с помощью наземного телескопа. В случае, когда наблюдатель, линза и источник находятся на одной прямой, возникнет изображение типа кольца, отмечал Хвольсон.

В 1935 этим эффектом заинтересовался ленинградский астроном Гавриил Адрианович Тихов (1875–1960). В январе 1936 он прочитал об этом лекции в Ленинграде и Пулкове, а в 1938 опубликовал в журнале «Природа» статью под названием Следствия возможного отклонения световых лучей в поле тяготения звезд. По совету чешского инженера Р.

Мандла в 1936 Эйнштейн рассмотрел гравитационное действие одной звезды на излучение другой. Он вычислил коэффициент усиления света и пришел к выводу, что в случае, когда обе звезды и наблюдатель находятся на одной прямой, изображение далекой звезды будет иметь форму кольца.

Подобно другим теоретикам, Эйнштейн не верил в возможность экспериментального обнаружения эффекта гравитационной линзы в приложении к обычным звездам, поскольку более близкая к наблюдателю звезда-линза мешает своим излучением разглядеть искаженное и слабое изображение более далекой звезды.

В своей статье Линзоподобное действие звезды при отклонении света в гравитационном поле, опубликованной в журнале «Science» в 1936, Эйнштейн писал: «Конечно, нельзя надеяться на то, что удастся прямо наблюдать это явление».

Более поздние работы показали, что ситуация со звездой-линзой еще хуже, чем думал Эйнштейн: любое отклонение формы звезды от идеального шара, например, вызванное ее вращением, только затруднит обнаружение эффекта. И все же эффект был обнаружен.

Межгалактические гравитационные линзы

В 1937 астроном Ф.Цвикки теоретически пришел к выводу, что эффект гравитационной фокусировки света можно наблюдать в том случае, если линзой является галактика, поскольку ее гравитационное поле очень велико, а средняя поверхностная яркость довольно мала и поэтому не должна сильно мешать наблюдению.

В 1979 английские астрономы Д.Волш и др. впервые обнаружили двойной квазар (QSO 0957+16 A,B) с угловым расстоянием между компонентами A и B около 6І. Красное смещение линий в спектрах обоих компонентов оказалось одинаковым.

А когда выяснилось, что оба квазара изменяют свой блеск синхронно, астрономы поняли, что в действительности это два изображения одного квазара, обязанные эффекту гравитационной линзы. Вскоре нашли и саму линзу – далекую галактику, лежащую между Землей и квазаром.

Так впервые был обнаружен эффект гравитационного линзирования. Предсказание Цвикки подтвердилось.

К началу 21 в. было найдено уже несколько десятков гравитационных линз. Форма даваемого ими изображения зависит от того, насколько симметрично распределена масса в объекте-линзе и насколько точно на одной прямой располагаются Земля, линза и наблюдаемый сквозь нее светящийся объект.

В идеальном случае его изображение должно иметь форму кольце вокруг центра линзы; такое изображение называют «кольцом Эйнштейна» или «кольцом Хвольсона-Эйнштейна».

Некоторые из обнаруженных астрономами изображений действительно имеют форму ровного или разорванного кольца, которое возникает при смещении объекта наблюдения относительно линии «Земля – линза».

Для астрономов изучение эффекта гравитационного линзирования важно потому, что оно позволяет выявить массу в любой ее форме – как видимой, так и невидимой. Известно, что многие галактики окружены протяженными коронами из невидимого вещества неизвестного типа.

В крупных скоплениях галактик также замечено присутствие «скрытой массы», природа которой неизвестна.

Исследуя изображения далеких квазаров, возникшие в результате эффекта гравитационного линзирования, можно весьма детально восстановить распределение темного вещества в коронах галактик и между галактиками.

Переменность блеска, присущая многим квазарам, позволяет с помощью эффекта гравитационной линзы определять постоянную Хаббла, указывающую скорость расширения Вселенной. Для этого измеряют запаздывание во времени, с которым меняют свой блеск разные изображения одного квазара, созданные линзой.

Это дает истинную разницу длины световых путей у разных изображений. А относительную разницу дает расчет геометрии лучей по взаимному положению изображений.

Вместе это позволяет вычислить истинное расстояние как до линзы, так и до квазара и, следовательно, определить постоянную Хаббла (поскольку скорости объектов легко измеряются по красному смещению линий в их спектрах).

Звездные гравитационные микролинзы

Вполне возможно, что эффект гравитационной линзы поможет не только выявить невидимое вещество в галактиках, но и понять его природу. Это очень важная задача, поскольку астрономы до сих пор не знают, из чего состоит невидимая корона Галактики, содержащая большую часть ее массы.

В какие объекты «расфасована» эта загадочная масса? В принципе, это может быть что угодно – от мельчайших субъядерных частиц (например, нейтрино) до гигантских черных дыр с массами в миллионы масс Солнца? Как определить массу отдельных невидимых носителей скрытой массы? Очевидно, нужно заметить действие их гравитационного поля на другие, видимые объекты.

Было предложено немало идей, как это сделать: маленькие невидимые объекты могут попадать в звезды и планеты, очень крупные невидимки сами могут притягивать к себе звезды и даже, как черные дыры, «глотать» их.

Не найдя явных следов таких событий, астрономы решили устроить «засаду» на объекты-невидимки, используя эффект гравитационной линзы: предполагалось искать искажение изображений отдельных звезд. Эту идею одним из первых разработал московский физик А.В.Бялко в конце 1960-х.

Поскольку масштаб явления ожидался существенно меньший, чем в мире квазаров и скоплений галактик, то ожидаемый эффект назвали «гравитационным микролинзированием».

В 1990-е годы началось сразу несколько экспериментов по поиску носителей невидимой массы с использованием эффекта гравитационного микролинзирования: польско-американский эксперимент OGLE (Optical Gravitational Lensing Experiment), американо-австралийский MACHO (Massive Compact Halo Object) и французский EROS (Experience de Recherche d'Objets Sombres).

В каждом из них практически непрерывно измерялась яркость тысяч звезд в надежде, что проходящий между Землей и наблюдаемой звездой невидимый объект своим гравитационным полем исказит ее изображение и изменит его яркость.

Именно однократная спонтанная переменность блеска звезды должна указывать на то, что это гравитационный эффект случайного пролета невидимого тела, а не обычная для многих звезд переменность светимости.

За прошедшие годы в указанных экспериментах зафиксировано множество подозрительных случаев, но с выводами астрономы не спешат: нужно накопить большой материал, чтобы данные о невидимых объектах стали надежными.

Впрочем, затраченные на эти эксперименты усилия уже окупились: регулярное наблюдение за тысячами звезд помогло выявить среди них множество новых переменных и детально изучить их поведение. Для астрономов, исследующих жизнь обычных звезд, это очень ценная информация.

Во время этих же наблюдений были открыты некоторые экзопланеты по вызываемому ими затмению при пролете перед диском звезды. Но все же есть надежда, что и носители скрытой массы будут надежно выявлены в этих экспериментах.

Ведь непонятая до сих пор природа невидимого вещества Вселенной – это вызов для современной науки!

В перспективе эффект гравитационной фокусировки найдет более широкое применение в астрофизике.

Например, для некоторых типов излучения и частиц, способных проникать сквозь звезды, последние могут служить очень мощными усилителями потока. Например, для гравитационных волн и нейтрино Солнце может играть роль хорошего концентратора.

Надо лишь разместить приемную аппаратуру в его фокусе, удаленном от Солнца на 550 астрономических единиц. Такие проекты уже существуют.

Владимир Сурдин

Источник: https://www.krugosvet.ru/enc/nauka_i_tehnika/fizika/GRAVITATSIONNAYA_LINZA.html?page=0,1

Что такое гравитационный эффект в смартфоне

Гравитационный эффект в телефоне что это

При повороте смартфона экран поворачивается в зависимости от расположения техники. Это предоставляет целый ряд удобств. Просматривать видео и фотографии, редактировать статьи и таблицы намного удобнее в альбомном расположении экрана.

Может использоваться и в качестве строительного уровня. Шагомеры тоже работают на основе акселерометра.

Также существуют игры, в которых управление осуществляется с помощью поворота смартфона. Автоматический поворот при этом и мгновенное возвращение обратно позволяют быстро менять режим, не отвлекаясь от действия.

Достигается это с помощью акселерометра – так называемого гравитационного эффекта – датчика расположения в пространстве. Это устройство считывает расположение смартфона в пространстве и самопроизвольно поворачивает дисплей в соответствии с положением техники.

Акселерометр в смартфоне

Этот датчик в смартфоне – это небольшой черный квадрат, расположенный на плате. Представляет собой небольшой элемент, внутри которого расположена ртуть. Основная его функция – измерение ускорения движения, с помощью чего достигается контроль положения в пространстве.

При изменении положения смартфона меняется и ртутный шарик устройства. Измеряется значение этого смещения, на основании этих данных вычисляется положение телефона.

Включение акселерометра

Для того, чтобы определить наличие этого устройства в телефоне, нужно его просто повернуть. Если экран не поворачивается следом за смартфоном, значит в нем нет акселерометра или он выключен.

При отсутствии этого устройства в телефоне его не получится добавить ни каким способом. В этом случае можно только купить телефон или планшет со встроенным акселерометром.

Для включения акселерометра существуют два способа. В большинстве моделей присутствуют два способа, но в некоторых – только один. Для включения первым способом необходимо зайти в меню настройки экрана, выбрать пункт «Включить поворот экрана».

Учитывайте, что этот пункт может быть написан по-разному в разных моделях. Для второго способа включения акселерометра необходимо сдвинуть вниз на весь экран верхнюю панель и включить эту функцию.

Иногда использование автоматического поворота не только не нужно, но и мешает. В таком случае нужно выключить эту функцию. Выключается она так же, как и при включении. Если появилась необходимость, то можно включить обратно.

Калибровка акселерометра

В случае, когда не работает или работает неправильно акселерометр в телефоне, нужно провести калибровку. Это не сложное действие поможет скорректировать функцию автоматического поворота экрана.

Для этого необходимо скачать любое бесплатное мобильное приложение для калибровки. Установить смартфон на прямую поверхность.

Перейти в меню в настройки акселерометра в программе. После чего подтвердить запрос об установке на прямую поверхность. Калибровка запустится автоматически. После ее завершения появится соответствующая надпись.

Возможные неисправности акселерометра

Бывают ситуации, когда акселерометр перестает работать. В некоторых случаях исправить ситуацию поможет только мастер. Но некоторые проблемы можно устранить самому.

Если устройство перестало работать после скачивания и установки какого-либо приложения, нужно в первую очередь удалить это приложение. Акселерометр будет работать, если приложение являлось причиной неисправности.

Иногда требуется сбросить настройки. Для этого скопируйте на карту памяти необходимые данные и выберете в меню настроек пункт «Сброс до заводских настроек».

Бывает причиной является устаревшее программное обеспечение. Для обновления необходимо установить интернет – соединение и выбрать в меню «Обновление ПО».

Если для калибровки выбрана не ровная поверхность, а расположенная под небольшим наклоном, акселерометр может работать некорректно. Для исправления необходимо правильно выбрать поверхность и повторить калибровку.

Другие области применения акселерометра

Акселерометр – очень важное устройство. Помимо поворота экрана в смартфоне или планшете, оно применяется еще в некоторых областях:

  • В самолетостроении навигационные приборы созданы на основе акселерометра.
  • В автомобилестроении видео регистраторы и спидометре используют это устройство.
  • В станкостроении системы защиты и контроля вибрации работают на показаниях акселерометра.
  • В информационных технологиях система защиты жестких дисков от падений.

Простое устройство прочно вошло в нашу жизнь. Благодаря ему можно как производить сложные работы, так и развлекаться. Акселерометр, встроенный в телефон, поможет и при занятиях спортом, и при игре, и при просмотре видео и фотографий, и при строительстве.

Наличие этого устройства добавляет смартфонам множество полезных функций.

Источник: https://askonline.ru/chto-takoe-gravitatsionnyj-effekt-v-smartfone/

Гравитация

Гравитационный эффект в телефоне что это

Не смотря на то, что гравитация – это слабейшее взаимодействие между объектами во Вселенной, ее значение в физике и астрономии огромно, так как она способна оказывать влияние на физические объекты на любом расстоянии в космосе.

Общие сведения

Если вы увлекаетесь астрономией, вы наверняка задумывались над вопросом, что собой представляет такое понятие, как гравитация или закон всемирного тяготения. Гравитация – это универсальное фундаментальное взаимодействие между всеми объектами во Вселенной.

Открытие закона гравитации приписывают знаменитому английскому физику Исааку Ньютону. Наверное, многим из вас известна история с яблоком, упавшим на голову знаменитому ученому.

Тем не менее, если заглянуть вглубь истории, можно увидеть, что о наличии гравитации задумывались еще задолго до его эпохи философы и ученые древности, например, Эпикур. Тем не менее, именно Ньютон впервые описал гравитационное взаимодействие между физическими телами в рамках классической механики.

Его теорию развил другой знаменитый ученый – Альберт Эйнштейн, который в своей общей теории относительности более точно описал влияние гравитации в космосе, а также ее роль в пространственно-временном континууме.

Закон всемирного тяготения Ньютона говорит, что сила гравитационного притяжения между двумя точками массы, разделенными расстоянием обратно пропорциональна квадрату расстояния и прямо пропорциональна обеим массам. Сила гравитации является дальнодействующей.

То есть, в независимости от того, как будет двигаться тело, обладающее массой, в классической механике его гравитационный потенциал будет зависеть сугубо от положения этого объекта в данный момент времени. Чем больше масса объекта, тем больше его гравитационное поле – тем более мощной гравитационной силой он обладает.

Такие космически объекты, как галактики, звезды и планеты обладают наибольшей силой притяжения и соответственно достаточно сильными гравитационными полями.

Гравитационные поля

Гравитационное поле Земли

Гравитационное поле – это расстояние, в пределах которого осуществляется гравитационное взаимодействие между объектами во Вселенной. Чем больше масса объекта, тем сильнее его гравитационное поле – тем ощутимее его воздействие на другие физические тела в пределах определенного пространства.

Гравитационное поле объекта потенциально. Суть предыдущего утверждения заключается в том, что если ввести потенциальную энергию притяжения между двумя телами, то она не изменится после перемещения последних по замкнутому контуру.

Отсюда выплывает еще один знаменитый закон сохранения суммы потенциальной и кинетической энергии в замкнутом контуре.

В материальном мире гравитационное поле имеет огромное значения. Им обладают все материальные объекты во Вселенной, у которых есть масса. Гравитационное поле способно влиять не только на материю, но и на энергию.

Именно за счет влияния гравитационных полей таких крупных космических объектов, как черные дыры, квазары и сверхмассивные звезды, образуются солнечные системы, галактики и другие астрономические скопления, которым свойственна логическая структура.

Последние научные данные показывают, что знаменитый эффект расширения Вселенной так же основан на законах гравитационного взаимодействия. В частности расширению Вселенной способствуют мощные гравитационные поля, как небольших, так и самых крупных ее объектов.

Гравитационное излучение

Гравитационное излучение в двойной системе

Гравитационное излучение или гравитационная волна – термин, впервые введенный в физику и космологии известным ученым Альбертом Эйнштейном.

Гравитационное излучение в теории гравитации порождается движением материальных объектов с переменным ускорением.

Во время ускорения объекта гравитационная волна как бы «отрывается» от него, что приводит к колебаниям гравитационного поля в окружающем пространстве. Это и называют эффектом гравитационной волны.

Хотя гравитационные волны предсказаны общей теорией относительности Эйнштейна, а также другими теориями гравитации, они еще ни разу не были обнаружены напрямую. Связано это в первую очередь с их чрезвычайной малостью. Однако в астрономии существуют косвенные свидетельства, способные подтвердить данный эффект.

Так, эффект гравитационной волны можно наблюдать на примере сближения двойных звезд. Наблюдения подтверждают, что темпы сближения двойных звезд в некоторой степени зависят от потери энергии этих космических объектов, которая предположительно затрачивается на гравитационное излучение.

Достоверно подтвердить эту гипотезу ученые смогут в ближайшее время при помощи нового поколения телескопов Advanced LIGO и VIRGO.

Интересные эффекты гравитации

В современной физике существует два понятия механики: классическая и квантовая. Квантовая механика была выведена относительно недавно и принципиально отличается от механики классической.

В квантовой механике у объектов (квантов) нет определенных положений и скоростей, все здесь базируется на вероятности. То есть, объект может занимать определенное место в пространстве в определенный момент времени.

Куда переместиться он дальше, достоверно определить нельзя, а только с высокой долей вероятности.

Интересный эффект гравитации заключается в том, что она способна искривлять пространственно-временной континуум.

Теория Эйнштейна гласит, что в пространстве вокруг сгустка энергии или любого материального вещества пространство-время искривляется.

Соответственно меняется траектория частиц, которые попадают под воздействие гравитационного поля этого вещества, что позволяет с высокой долей вероятности предсказать траекторию их движения.

Теории гравитации

Сегодня ученым известно свыше десятка различных теорий гравитации. Их подразделяют на классические и альтернативные теории.

Наиболее известными представителем первых является классическая теория гравитации Исаака Ньютона, которая была придумана известным британским физиком еще в 1666 году.

Суть ее заключается в том, что массивное тело в механике порождает вокруг себя гравитационное поле, которое притягивает к себе менее крупные объекты. В свою очередь последние также обладают гравитационным полем, как и любые другие материальные объекты во Вселенной.

Следующая популярная теория гравитации была придумана всемирно известным германским ученым Альбертом Эйнштейном в начале XX века.

Эйнштейну удалось более точно описать гравитацию, как явление, а также объяснить ее действие не только в классической механике, но и в квантовом мире.

Его общая теория относительности описывает способность такой силы, как гравитация, влиять на пространственно-временной континуум, а также на траекторию движения элементарных частиц в пространстве.

Самая точная гравитационная карта Земли

Среди альтернативных теорий гравитации наибольшего внимания, пожалуй, заслуживает релятивистская теория, которая была придумана нашим соотечественником, знаменитым физиком А.А. Логуновым.

В отличие от Эйнштейна, Логунов утверждал, что гравитация – это не геометрическое, а реальное, достаточно сильное физическое силовое поле.

Среди альтернативных теорий гравитации известны также скалярная, биметрическая, квазилинейная и другие.

Интересные факты

  1. Людям, побывавшим в космосе и возвратившимся на Землю, достаточно трудно на первых порах привыкнуть к силе гравитационного воздействия нашей планеты. Иногда на это уходит несколько недель.
  2. Доказано, что человеческое тело в состоянии невесомости может терять до 1% массы костного мозга в месяц.

  3. Наименьшей силой притяжения в Солнечной системе среди планет обладает Марс, а наибольшей – Юпитер.
  4. Известные бактерии сальмонеллы, которые являются причиной кишечных заболеваний, в состоянии невесомости ведут себя активнее и способны причинить человеческому организму намного больший вред.

  5. Среди всех известных астрономических объектов во Вселенной наибольшей силой гравитации обладают черные дыры. Черная дыра размером с мячик для гольфа, может обладать той же гравитационной силой, что и вся наша планета.
  6. Сила гравитации на Земле одинакова не во всех уголках нашей планеты.

    К примеру, в области Гудзонова залива в Канаде она ниже, чем в других регионах земного шара.

by HyperComments

Источник: https://SpaceGid.com/gravitatsiya.html

Что такое гравитация

Гравитационный эффект в телефоне что это

Гравитация — это «искривление» пространства. Чем больше масса, тем большее «искривление» пространства и, следовательно, в это «искривление» «скатываются» более легкие объекты. Все объекты, обращающиеся вокруг Солнца, удерживаются на своих орбитах с помощью гравитации.

 Но она не только выполняет функции некоей привязи, но ещё и стала той силой, что создала эти объекты. Сила тяготения не позволяет планетам выбирать путь по своему усмотрению, закольцевав их орбиты.

Но зависимость от этой силы уменьшается экспоненциально – при удалении в два раза, воздействие ослабляется в четыре раза, а утроение удаления ослабляет силу уже в девять раз.

Ньютон напрямую ассоциировал гравитацию с силой тяжести. К телу приложена сила тяжести, источником которой является иное тело (или тела), а гравитационного поля, как такового, просто не существует.

Поскольку гравитация относится к прямому взаимодействию тел, то и определяется она Законом всемирного тяготения. Гравитационному полю придан условный характер, необходимый лишь для расчётов.

Для земных условий это вполне допустимо.

Гравитация от Эйнштейна

Гравитационное воздействие описывал ещё Аристотель. Он полагал, что скорость падения предмета зависима от его массы. Но лишь Галилей смог понять, что любое тело имеет равное значение ускорения. А Эйнштейн развил это утверждение в своей теории относительности, описав гравитацию с понятием геометрии пространства-времени.

В классическом представлении сила гравитационного взаимодействия двух точек имеет вид зависимости массы этих точек от расстояния в квадрате между ними. Чем больше тело, тем большее гравитационное поле оно может создать.Гравитационное притяжение универсально по характеру воздействия на материю, нет объектов, не имеющих его.

Эйнштейн постулировал, что гравитационные эффекты обуславливаются не силовыми влияниями тела или поля, находящегося в пространстве-времени, а изменениями в самом пространстве-времени. Всё это происходит из-за наличия массы-энергии. По теории Эйнштейна, масса и энергия – это единый параметр тел.

Их связывает всем известная формула: Е = m•с² Два массивных тела, взаимодействуя между собой, будут искривлять пространство. Но почему происходит это искривление, Эйнштейн ответа дать не смог. Гравитация, в силу своей глобальности, отвечает за явления крупных масштабов. Это галактические структуры, чёрные дыры, расширяющаяся Вселенная.

Но и простые факты астрономии, – планетные орбиты, земное притяжение, падение тел, – тоже зависимы от гравитации.

Небесная механика

Эта часть механики изучает движение тел, находящихся в ничем не заполненном пространстве, на которые действует только гравитация. Самая простая задача раздела – обоснование гравитационного влияния двух тел, точечных или сферических, в пустом пространстве. Если же тел, которые взаимодействуют друг на друга, большее количество, задача усложняется.

Численное решение приводит к неустойчивости решений от начальных условий. То есть, применив её к нашей планетной системе, мы не сумеем предугадать планетные движения на периоды, превысившие сто миллионов лет. Описание долговременного поведения системы, состоящей из многих притягивающихся тел с похожей массой, пока невозможно.

Этому мешает понятие: динамический хаос.

Гравитационные волны

Гравитационные волны — изменения гравитационного поля, распространяющиеся подобно волнам. Излучаются движущимися массами, но после излучения отрываются от них и существуют независимо от этих масс. Математически связаны с возмущением метрики пространства-времени и могут быть описаны как «рябь пространства-времени».

 Гравитационные волны предсказываются общей теорией относительности.

Впервые они были непосредственно обнаружены в сентябре 2015 года двумя детекторами-близнецами обсерватории LIGO, на которых были зарегистрированы гравитационные волны, возникшие, вероятно, в результате слияния двух чёрных дыр и образования одной более массивной вращающейся чёрной дыры.

Гравитон

Поскольку гравитационное взаимодействие присутствует, оно должно как-то переноситься. В 30-х годах ХХ века кандидатом в переносчики стал гравитон. Эта частица пока ещё гипотетическая, но она должна иметь спин 2 и два вероятных направления поляризации.

Некоторые физики упорно отвергают существование этой частицы. Они предполагают: если гравитоны имеются, то их должны излучать чёрные дыры, а это вступает в противоречия с ОТО.

 Но попытки расширить стандартную модель такими частицами сопряжены с реальными трудностями в области высоких энергий. На решении этой задачи основаны некоторые разрабатываемые теории квантовой гравитации. По их положениям гравитоны — состояние струн, а отнюдь не точечные частицы.

Но низкие энергии их всё же причисляют к частицам точечным. Пока гравитоны обнаружены не были, потому что гравитационные влияния их необычайно слабы.

Квантовая гравитация

Универсальной квантовой теории, объяснившей бы само понятие гравитации, ещё не разработано.

 Для представления гравитационного взаимодействия было бы вероятно предложить гравитонный обмен, в котором гравитоны выступают в качестве калибровочных бозонов со спином 2. Но такая теория не считается удовлетворительной.

На существующее время есть несколько подходов, разрешающих квантование гравитации. Эти подходы считаются достаточно перспективными.

  • Теория струн. Она заменяет частицы фона пространства-времени на струны и браны (подобие струн). Для решения многомерных задач, браны видятся как частицы уже многомерные, но в тоже время они и структуры пространства-времени. Гравитоны здесь становятся состоянием струн, а не отдельными частицами. Хотя низкие энергии их к ним и причисляют.
  • Петлевая квантовая гравитацияЗдесь время и пространство являются дискретными частями. Они не привязаны к фону пространства-времени, являясь квантовыми пространственными ячейками. Они между собой соединены таким образом, что в малых временных масштабах представляются дискретной структурой пространства. При укрупнении масштабов, части плавно становятся непрерывным пространством-временем. Петлевая гравитация способна описать сущность Большого взрыва, а также пролить свет на его преддверие. Это даже позволяет обходиться без привлечения бозона Хиггса.

Сильные гравитационные поля

В очень сильных гравитационных полях могут быть проявления некоторых эффектов ОТО:

  • закон тяготения отклоняется от ньютоновского
  • появляются гравитационные волны
  • есть эффекты нелинейности
  • видимое пространство-время изменяет свою геометрию
  • возможно появление сингулярностей и рождение чёрных дыр.

Но такие проявления могут иметь место лишь в том случае, если гравитация имеет силу бесконечно большую. Пока что наиболее плотными объектами Вселенной, которые удалось обнаружить, являются нейтронные звёзды.

 В одной из многих теорий гравитационное поле рассматривается в качестве основы для любого поля – магнитного, электрического, глюонного. В таком случае гравитоны становятся базовыми элементами материи.

Ну, а чёрная дыра является гравитонной звездой, где силой тяготения разрушаются абсолютно все элементарные частицы, кроме гравитонов. И остаётся лишь одно свойство – гравитация.

Гравитационный коллапс

Когда массивное тело, испытывая гравитационные силы, катастрофически быстро сжимается, происходит его коллапс. Так может закончиться жизнь звезды, имеющей массу более трёх солнечных. Когда в звездах заканчивается запас топлива для продолжения термоядерного процесса, их механическая устойчивость нарушается, и происходит стремительное, с ускорением, сжатие к центральной части.

Если давление внутри звезды, которое постоянно растёт, сможет остановить сжатие, то центральная часть светила превратится в нейтронную звезду. При этом возможно сбрасывание оболочки и вспыхивание сверхновой. Но при превышении звездой массы, определённой пределом Оппенгеймера-Волкова, коллапс закончится преобразованием её в чёрную дыру. Значение данного предела пока точно не установлено.

Некоторые парадоксы

  1. Вращающийся вокруг Земли спутник, по отношению к планете, невесом. И всё, что в нём находится, также невесомо. Луна, относительно Земли, опять же невесома, но тела на её поверхности весом уже обладают. Тоже самое и с Землёй. Она невесома относительно Солнца, но мы на ней вес ощущаем. Солнце тоже невесомо относительно галактического ядра. И так – до бесконечности.
  2. В звёздах, в процессе термоядерных реакций, создаётся огромное давление. Но оно сдерживается гравитационными силами. То есть, существование звезды возможно потому, что присутствует динамическое равновесие: температура-давление – гравитационные силы.
  3. В чёрной дыре прекращаются все процессы, кроме одного – гравитации. Её ничто не может поглотить или искривить.

Источник: http://light-science.ru/fizika/chto-takoe-gravitatsiya.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.